A hybrid generative/discriminative approach to text classification with additional information

نویسندگان

  • Akinori Fujino
  • Naonori Ueda
  • Kazumi Saito
چکیده

This paper presents a classifier for text data samples consisting of main text and additional components, such as Web pages and technical papers. We focus on multiclass and single-labeled text classification problems and design the classifier based on a hybrid composed of probabilistic generative and discriminative approaches. Our formulation considers individual component generative models and constructs the classifier by combining these trained models based on the maximum entropy principle. We use naive Bayes models as the component generative models for the main text and additional components such as titles, links, and authors, so that we can apply our formulation to document and Web page classification problems. Our experimental results for four test collections confirmed that our hybrid approach effectively combined main text and additional components and thus improved classification performance. 2006 Published by Elsevier Ltd.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Hybrid Generative/Discriminative Approach to Semi-Supervised Classifier Design

Semi-supervised classifier design that simultaneously utilizes both labeled and unlabeled samples is a major research issue in machine learning. Existing semisupervised learning methods belong to either generative or discriminative approaches. This paper focuses on probabilistic semi-supervised classifier design and presents a hybrid approach to take advantage of the generative and discriminati...

متن کامل

Hybrid Discriminative-Generative Approach with Gaussian Processes

Machine learning practitioners are often faced with a choice between a discriminative and a generative approach to modelling. Here, we present a model based on a hybrid approach that breaks down some of the barriers between the discriminative and generative points of view, allowing continuous dimensionality reduction of hybrid discretecontinuous data, discriminative classification with missing ...

متن کامل

Exploiting Unlabelled Data for Hybrid Object Classification

We propose a semi-supervised learning algorithm for visual object categorization which utilizes statistical information from unlabelled data to increase classification performance. We build on an earlier hybrid generative-discriminative approach by Holub et al. [6] which extracts Fisher scores from generative models. The hybrid model allows us to combine the modelling power and flexibility of g...

متن کامل

Terms-based discriminative information space for robust text classification

With the popularity of Web 2.0, there has been a phenomenal increase in the utility of text classification in applications like document filtering and sentiment categorization. Many of these applications demand that the classification method be efficient and robust, yet produce accurate categorizations by using the terms in the documents only. In this paper, we propose a novel and efficient met...

متن کامل

Semi-Supervised Learning for Multi-Component Data Classification

This paper presents a method for designing a semisupervised classifier for multi-component data such as web pages consisting of text and link information. The proposed method is based on a hybrid of generative and discriminative approaches to take advantage of both approaches. With our hybrid approach, for each component, we consider an individual generative model trained on labeled samples and...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Inf. Process. Manage.

دوره 43  شماره 

صفحات  -

تاریخ انتشار 2007